Let $X_1,X_2,…,X_n$ be a random sample from any distribution with mean $\mu$ and variance $\sigma^2$.

\[\sigma^2=Var[X]:=E[(X-\mu)^2]\]

To estimate this from the sample, we could use

\[\stackrel{\sim}{S^2}=\frac{\sum_{i=1}^{n}(X_i-\overline{X})^2}{n}\\\]
  • Currently, before numerical observations, this is a random variable.

  • It has its own distribution, its own mean, and its own variance.

\[\begin{align} \sum_{i=1}^{n}(X_i-\overline{X})^2&=\sum_{i=1}^{n}(X_i^2-2\overline{X}X_i+\overline{X}^2)\\ &=\sum_{i=1}^{n}X_i^2-2\overline{X}\underbrace{\sum_{i=1}^{n}X_i}_{n\overline{X}}+n\overline{X}^2\\ &=\sum_{i=1}^{n}X_i^2-n\overline{X}^2\\ &=\sum_{i=1}^{n}X_i^2-n\Bigg(\sum_{i=1}^{n}X_i\bigg/n\Bigg)^2\\ &=\sum_{i=1}^{n}X_i^2-\frac{\bigg(\sum_{i=1}^{n}X_i\bigg)^2}{n}\\ &\text{(computationally computation)}\\ \end{align}\]

To find the expected value of $X^2$, we can use the definition of variance

\[Var[X]=E[(X-\mu)^2]=E[X^2]-(E[X])^2\\ \Downarrow\\ \begin{align} E[X^2]&=Var[X]+(E[X])^2\\ &=\sigma^2+\mu^2\\ \end{align}\\ \Downarrow\\ E[\stackrel{\sim}{S^2}]=\frac{n-1}{n}\sigma^2\\ \text{(Biased variance)}\]

Variant of Sample Variance:

$$ S^2=\frac{\sum_{i=1}^{n}(X_i-\overline{X})^2}{n-1} $$

We can observe that

\[S^2=\frac{n}{n-1}\stackrel{\sim}{S^2}\\ \begin{align} \implies E[S^2]&=\frac{n}{n-1}E[\stackrel{\sim}{S^2}]\\ &=\frac{n}{n-1}\frac{n-1}{n}\sigma^2=\sigma^2\\ &\text{(Unbiased estimator)} \end{align}\]

For the normal distribution, these two below are independent:

\[\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_i\\ S^2=\frac{\sum_{i=1}^{n}(X_i-\overline{X})^2}{n-1}\]

Aside:

\[X_1\sim\chi^2(n_1)\text{ and }X_2\sim\chi^2(2_1)\\ \text{independent}\\ \Downarrow\\ X_1+X_2\sim\chi^2(n_1+n_2)\]

And

\[X_1\sim\chi^2(n_1)\text{ and }X_2\sim\chi^2(2_1)\\ X_3\sim?\\ X_1=X_2+X_3\\ \text{and $X_2$ and $X_3$ independent}\\ \Downarrow\\ X_3=X_1-X_2\sim\chi^2(n_1-n_2)\\\]

Let $X_1,X_2,…,X_n$ be a random sample from the normal distribution with mean $\mu$ and variance $\sigma^2$.

\[\begin{align} &\sum_{i=1}^{n}(X_i-\mu)^2\\ &=\sum_{i=1}^{n}(X_i-\overline{X}+\overline{X}-\mu)^2\\ &=\sum_{i=1}^{n}(X_i-\overline{X})^2\\ &\qquad+2(\overline{X}-\mu)\underbrace{\sum_{i=1}^{n}(X_i-\overline{X}}_{0})\\ &\qquad+n(\overline{X}-\mu)^2\\ &=\sum_{i=1}^{n}(X_i-\overline{X})^2+n(\overline{X}-\mu)^2\\ \end{align}\]

We divide the term above to $\sigma^2$

\[\begin{align} &\underbrace{\frac{\sum_{i=1}^{n}(X_i-\mu)^2}{\sigma^2}}_{1}\\ &\qquad=\underbrace{\frac{\sum_{i=1}^{n}(X_i-\overline{X})^2}{\sigma^2}}_{2}+\underbrace{\frac{n(\overline{X}-\mu)^2}{\sigma^2}}_{3} \end{align}\]
  • (1)

    \[\frac{\sum_{i=1}^{n}(X_i-\mu)^2}{\sigma^2}=\underbrace{\sum_{i=1}^{n}\Bigg(\underbrace{\frac{X_i-\mu}{\sigma}}_{N(0,1)}\Bigg)^2}_{\chi^2(n)}\]
  • (3)

    \[\frac{n(\overline{X}-\mu)}{\sigma^2}=\underbrace{\Bigg(\underbrace{\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}}_{N(0,1)}\Bigg)^2}_{\chi^2(1)}\]
  • (2)

    \[\frac{\sum_{i=1}^{n}(X_i-\overline{X})^2}{\sigma^2}=\frac{(n-1)S^2}{\sigma^2}\]

We have

\[\underbrace{W_1}_{\chi^2(n)}=\overbrace{W_2+\underbrace{W_3}_{\chi^2(1)}}^{\text{independent}}\]

We can say

\[\implies W_2=\frac{(n-1)S^2}{\sigma^2}\sim\chi^2(n-1)\]