The t and Chi-Squared Distributions and The Sample Variance
The Chi-Squared Distribution
There is a special gamma distribution:
\[X\sim\Gamma\bigg(\frac{n}{2},\frac{1}{2}\bigg)\] \[f_X(x)=\frac{1}{\Gamma(n/2)}\bigg(\frac{1}{2}\bigg)^{n/2}x^{n/2-1}e^{-\frac{1}{2}x}I_{(0,\infty)}(x)\]We write $X\sim\chi^2(n)$.
A chi-squared distribution with n degree of freedom parameter.
Thing About $\chi^2(n)$
\[X\sim\Gamma(\alpha,\beta)\\ \text{Moment generation:}\\ \implies M_X(t) = \bigg(\frac{\beta}{\beta-t}\bigg)^{\alpha}\]So,
\[X\sim\chi^2(n)=\Gamma(n/2,1/2)\\ \implies M_X(t) = \bigg(\frac{1/2}{1/2-t}\bigg)^{n/2}\]Suppose that $X_1,X_2,…,X_k$ are independent radom variables with $X_i\sim\chi^2(n_i)$.
Let $Y = \sum_{i=1}^{k}X_i$
We have the moment generating function for $Y$
\[\begin{align} M_Y(t)&=E[e^{tY}]=E\bigg[e^{t\sum_{i=1}^{k}X_i}\bigg]\\ &=E\Bigg[\prod_{i=1}^{k}e^{tX_i}\Bigg]\\ &\text{Because these rv are independent}\\ &\stackrel{indep}{=}\prod_{i=1}^{k}E\Big[e^{tX_i}\Big] \end{align}\] \[\begin{align} M_Y(t)&=\prod_{i=1}^{k}E\Big[e^{tX_i}\Big]=\prod_{i=1}^{k}M_{X_i}(t)\\ &=\prod_{i=1}^{k}\bigg(\frac{1/2}{1/2-t}\bigg)^{n_i/2}\\ &=\bigg(\frac{1/2}{1/2-t}\bigg)^{\sum_{i=1}^{k}n_i/2} \end{align}\]If we add up $k$ independent $\chi^2$ random variable, we get another random variable that has a $\chi^2$ distribution as well.
\[\implies Y\sim\chi^2(n_1+n_2+...+n_k)\]$\implies$ The sum of chi-squareds is chi-squared!
The Chi-Squared Normal Relationship
Let $X\sim N(0,1)$.
Let $Y=X^2$.
Then $Y\sim\chi^2(1)$.
The pdf transformation $Y=g(x)$is
\[f_Y(y) = f_X(g^{-1}(y))\Bigg|\frac{d}{dy}g^{-1}(y)\Bigg|\]Suppose we have two random variabe $X_1$ and $X_2$ with a joint PDF $f_{X_1}$ and $f_{X_2}$.
There is a bivariate version of this to go from $X_1$ and $X_2$ to $Y_1=g_1(X_1,X_2)$ $Y_2=g_2(X_1,X_2)$.
In 2 dimensions, the absolute value of the pdf function above called a Jacobian, which is a determinant of a matrix of partial derivatives.
\[f_{Y_1,Y_2}(y_1,y_2)=f_{X_1,X_2}(g_1^{-1}(y_1,y_2),g_2^{-1}(y_1,y_2)).\mid J\mid\]Where
\[J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} \quad \text{(determinant)}\]The t-Distribution
Let $Z \sim N(0,1)$ and $W\sim\chi^2(n)$ be independent random variables.
Define
\[T=\frac{Z}{\sqrt{W/n}}\]If we form the ratios as the equation above, and name that new random variable $T$. We could use the Jacobian method to find the distribution of $T$.
Do the “Jacobian transformation” with
$X1=Z \quad Y_1=\frac{X1}{\sqrt{X2/n}}$
$X_2=W \quad Y_2=g_2(X_1,X_2)$
Can show that $T$ has pdf
\[f_T(t)=\frac{\Gamma\big(\frac{n+1}{2}\big)}{\Gamma\big(\frac{n}{2}\big)} \frac{1}{\sqrt{n\pi}}\Bigg(1+\frac{t^2}{n}\Bigg)^{-(n+1)/2}\\\]-
Mean: $0$
-
Variance: $\frac{n}{n-2}$
We write $T\sim t(n)$. “A t distribution with n degrees of freedom”.
If we have a $t$ random variable and it has n degrees of freedom, as n gets larger and larger, that $t$ gets closer and closer to a standard normal distribution.
Suppose that
\[X_1,X_2,...,X_n \stackrel{iid}{\sim}N(\mu,\sigma^2)\] \[\begin{align} \sum_{i=1}^{n}(X_i-\mu)^2 &= \sum_{i=1}^{n}(X_i-\bar{X}+\bar{X}-\mu)^2\\ &=\sum_{i=1}^{n}(X_i-\bar{X})^2+2(\bar{X}-\mu)\sum_{i=1}^{n}(X_i-\bar{X}) + n(\bar{X}-\mu)^2\\ &\text{We have }\sum_{i=1}^{n}(X_i-\bar{X})=\sum_{i=1}^{n}X_i-n\bar{X}\\ &=\sum_{i=1}^{n}X_i-n\frac{1}{n}\sum_{i=1}^{n}X_i=0 \end{align}\]Now we have
\[\sum_{i=1}^{n}(X_i-\mu)^2=\sum_{i=1}^{n}(X_i-\bar{X})^2 + n(\bar{X}-\mu)^2\]Dividing through by $\sigma^2$
\[\underbrace{\sum_{i=1}^{n}\bigg(\frac{X_i-\mu}{\sigma}\bigg)^2}_{Y_1}=\underbrace{\frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{\sigma^2}}_{Y_2} + \underbrace{\bigg(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\bigg)^2}_{Y_3}\]We will call these terms above $Y_1,Y_2,Y_3$, they are all random variables. And we’re gonna talk about these distributions
$Y_1$ distribution:
\[Y_1=\sum_{i=1}^{n}\bigg(\frac{X_i-\mu}{\sigma}\bigg)^2\]and we know $X_i \sim N(\mu,\sigma^2)$, so:
\[\frac{X_i-\mu}{\sigma}\sim N(0,1)\\ \Downarrow \\ \bigg(\frac{X_i-\mu}{\sigma}\bigg)^2 \sim\chi^2(1)\\ \Downarrow \\ \sum_{i=1}^{n}\bigg(\frac{X_i-\mu}{\sigma}\bigg)^2\sim\chi^2(n)\]$Y_3$ distribution:
\[Y_3=\bigg(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\bigg)^2\]and we know $\bar{X}\sim N(\mu,\sigma^2/n)$, so:
\[\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)\\ \Downarrow \\ \bigg(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\bigg)^2\sim\chi^2(1)\]$Y_2$ distribution:
\[Y_1=\frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{\sigma^2}\]We have sample variance:
\[S^2=\frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{n-1}\\ \Downarrow\\ \frac{\sum_{i=1}^{n}(X_i-\bar{X})^2}{\sigma^2}=\frac{(n-1)S^2}{\sigma^2}\]Sum up, we have $Y_1=Y_2+Y_3$
- $Y_1 = \sum_{i=1}^{n}\bigg(\frac{X_i-\mu}{\sigma}\bigg)^2\sim\chi^2(n)$
- $Y_2 = \frac{(n-1)S^2}{\sigma^2}=?$
- $Y_3 = \bigg(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\bigg)^2\sim\chi^2(1)$
Find the moment generating function for $Y_1$
\[\begin{align} M_{Y_1}(t) &= M_{Y_2+Y_3}(t)\\ &\stackrel{indep}{=}M_{Y_2}(t).M_{Y_3}(t)\\ &\implies M_{Y_2}(t)=\frac{M_{Y_1}(t)}{M_{Y_3}(t)} \end{align}\]We know $Y_1,Y_3$ are $\chi^2$ distributions.
This is the moment generating function for a Chi-Squared random variable with $(n-1)$ degrees of freedom. \(\begin{align} M_{Y_2}(t)&=\frac{M_{Y_1}(t)}{M_{Y_3}(t)}\\ &=\frac{\bigg(\frac{1/2}{1/2-t}\bigg)^n}{\bigg(\frac{1/2}{1/2-t}\bigg)^1}\\ &=\bigg(\frac{1/2}{1/2-t}\bigg)^{\frac{n-1}{2}} \end{align}\)
$\implies Y_2=\frac{(n-1)S^2}{\sigma^2}\sim\chi^2(n-1)$ for $X_1,X_2,…,X_n\stackrel{iid}{\sim}N(\mu,\sigma^2)$.