Any linear combination of normal random variables is again normal.

  • $X_1,X_2,…,X_n$ normal

    $\implies a + \sum_{i=1}^{n}a_iX_i$ normal

  • This includes linear transformations of single normal random variables.

    \[X \sim N(\mu,\sigma^2) \quad \implies \quad Z:=\frac{X-\mu}{\sigma} \\\]

    $\implies Z \sim N(0,1) \quad \text{Standard Normal Dist.}$

    We can tranform the other way, from standard normal dist. to normal dist.

    $Z \sim N(0,1) \quad \implies \quad X:=\sigma Z+\mu\sim N(\mu,\sigma^2)$

Normal Distribution

\[X \sim N(\mu,\sigma^2)\\ \implies f_X(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}\]

Standard Normal Distribution

\[X \sim N(0,1)\\ \implies f_X(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}\]

The cdf cannot be written down in closed form.

Notation:

\[Z \sim N(0,1) \quad \text{Standard Normal} \\ \phi(z) = P(Z \le z)\]

Can be intergrated numerically.

  • Standard normal table.
  • R code: pnorm()

Example: pnorm($1.23$) will give us $0.891$.


Example 1

Suppose that $X\sim N(1,4)$.

Find $P(X\le 2)$.

\[\begin{align} P(X\le 2) &= P\Bigg(\frac{X-\mu}{\sigma}\le\frac{2-1}{\sqrt{4}}\Bigg)\\ &=P(Z\le 0.5)\\ &\approx 0.6915 \end{align}\]

Example 2

Suppose that $X_1,X_2,…,X_n\sim N(1,4)$. Find $P(\bar{X}\le 2)$.

  • \bar{X} has a normal distribution.
  • $E[\bar{X}] = E[X_1] = 1$.
  • $Var[\bar{X}] = \frac{Var(X_1)}{n} = \frac{4}{3}$.
\[\begin{align} P(\bar{X}\le 2) &= P\Bigg(\frac{\bar{X}-\mu_\bar{X}}{\sigma_\bar{X}}\le\frac{2-1}{2/\sqrt{3}}\Bigg)\\ &= P(Z\le\sqrt{3}/2)\\ &\approx 0.8068 \end{align}\]

Convergence in Distribution

Let $X_1,X_2,…,X_n$ be a sequence of random variables when $X_n$ has some cdf

$F_n(X)=P(X_n\le x)$.

Let $X$ be a random variable with cdf

$F(X)=P(X\le x)$

The sequence converges in distribution if

\[\lim_{n\to\infty}F_n(X) = F(x)\]

at all points of continuity of $F$.

We write $X_n \stackrel{d}{\rightarrow}X$.

This is a weak form of convergence.

The random variables in the sequence are not getting closer to each other.

Their distribution are getting close!


The Central Limit Theorem

Let $X_1,X_2,X_3…$ be a sequence of random variables from any distribution with mean $\mu$ and variance $\sigma^2\lt\infty$.

Let

\[\bar{X}_n=\frac{1}{n}\sum_{i=1}^{n}X_i\]

Then

\[\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\rightarrow}N(0,1)\]

Definition/Notation

A random variable $X_n$ is asymptotically normal if there exists sequences ${a_n}$ and ${b_n}$ of real numbers such that

\[\frac{X_n-a_n}{\sqrt{b_n}}\stackrel{d}{\rightarrow}N(0,1)\]

We write $X_n\stackrel{asymp}{\sim}N(a_n,b_n)$.

Note: This does not mean that $X_n \rightarrow N(a_n,b_n)$.

The Central Limit Theorem is saying that $\bar{X}_n$ is asymptotically normal.

We write

\[\bar{X}_n\stackrel{asymp}{\sim}N(\mu,\sigma^2/n)\]

Example

Let $\bar{X}$ be the sample mean for a random sample of size 100 from the $\gamma(3,2)$ distribution.

What is the approximate probability that $\bar{X}$ is greater than 1.4?

We already know that $\bar{X}$ has

  • mean $E[\bar{X}] = E[X_1] = 3/2$
  • variance $Var[\bar{X}]=\frac{Var[X_1]}{n}=\frac{3/4}{100}=\frac{3}{400}$

By the CLT, for this “large sample” $(n\ge30)$, the distribution of $\bar{X}$ is approximately normal.

So, we have that $\bar{X}$ has an approximately normal distribution with mean $3/2$ and variance $3/400$.

\[\begin{align} P(\bar{X}\gt1.4)&=P\Bigg(\frac{\bar{X}-\mu_\bar{X}}{\sigma_\bar{X}}\gt\frac{1.4-1.5}{\sqrt{3/400}}\Bigg)\\ &\approx P(Z \gt-1.15)\\ &\approx 0.87 \end{align}\] \[\begin{align} P(Z\gt-1.15)&=1-P(Z\le-1.15)\\ &=1-\phi(-1.15)\\ &\approx0.8749 \end{align}\]

Computed in R using: 1-pnorm(-1.15)

Note that:

\[\frac{\bar{X}-\mu_\bar{X}}{\sigma_\bar{X}} = \frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\]