The invariance property
Suppose you have a random sample from a distribution with mean $\mu$ and variance $\sigma^2$.
- An unbiased estimator of $\mu$ is $\bar{X}$.
- If we want to estimate $\mu^2$, should we use $\bar{X}^2$?
Not if we want an unbiased estimator!
\[\begin{align} E[\bar{X}^2] &= Var[\bar{X}] + (E[\bar{X}])^2 \\ &= \frac{\sigma^2}{n} + \mu^2 \neq \mu^2 \end{align}\]The Invariance Property of MLEs
\[X_1,X_2,...,X_n \stackrel{iid}{\sim} exp(rate=\lambda)\]Find the MLE of $\lambda^2$.
Let $\tau=\lambda^2$.
Reparameterize the pdf:
\[f(x;\lambda)=\lambda e^{-\lambda x}I_{(0,\infty)}(X)\]Becomes:
\[f_2(x;\tau) = \sqrt{\tau}e^{-\sqrt{\tau}x}I_{(0,\infty)}(X)\]After the taking the derivative and set equal $0$, we will get the MLE for $\tau$ is:
\[\hat{\tau} = \frac{1}{\bar{X}^2} = \hat{\lambda}^2\]The MLE for $\lambda$ is:
\[\hat{\lambda} = \frac{1}{\bar{X}}\]This is known as the invariance property of MLES. It means that if you want to estimate a function of a parameter using MLEs, you can find the MLE of the parameter and plug it into function.
Example:
\[X_1,X_2,...,X_n \sim Poisson(\lambda)\]How can we estimate the probability that a typical measurement from this data set is greater than zero?
Can we do this more formally with a maximum likelihood estimator?
One answer:
\[\hat{p_1} = \frac{\text{# values in the sample that are > 0}}{n}\]Other answer:
\[\begin{align} P(X_i\gt 0) &= 1 - P(X_i=0) \\ &= 1 - \frac{e^{-\lambda}\lambda^0}{0!} = 1 - e^{-\lambda} \quad (\tau(\lambda)) \end{align}\]The pdf is:
\[f(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}I_{(0,1,2,...)}(x)\]The joint pdf is:
\[\begin{align} f(\stackrel{\rightharpoonup}{x}&=\prod_{i=1}^{n}\frac{e^{-\lambda}\lambda^{x_i}}{x_i!}I_{(0,1,2,...)}(x_i) \\ &= \frac{e^{-\lambda}\lambda^{\sum_{i=1}^{n}x_i}}{\prod_{i=1}^{n}x_i!}\prod_{i=1}^{n}I_{(0,1,2,...)}(x_i)\\ &\text{Drop both indicators and the product of factorials}\\ &\text{because they don't involve $\theta$}\\ \end{align}\]A likelihood is:
\[L(\lambda) = e^{-\lambda}\lambda^{\sum_{i=1}^{n}x_i}\]The log-likelihood is:
\[\ell(\lambda) = -n\lambda+(\sum_{i=1}^{n}x_i)\ln\lambda\]Take the derivative and set to 0:
\[\frac{\partial}{\partial\lambda}\ell(\lambda)=0 \quad \implies \hat{\lambda} = \bar{X}\]The MLE for $\lambda$ is $\hat{\lambda} = \bar{X}$
By the invariance property of MLEs, the MLE for $p = \tau(\lambda) = 1 - e^{-\lambda}$ is:
\[\hat{\tau}(\lambda) \stackrel{invar}{=}\tau(\hat{\lambda}) = 1 - e^{-\bar{X}}\]