Suppose you have a random sample from a distribution with mean $\mu$ and variance $\sigma^2$.

  • An unbiased estimator of $\mu$ is $\bar{X}$.
  • If we want to estimate $\mu^2$, should we use $\bar{X}^2$?

Not if we want an unbiased estimator!

\[\begin{align} E[\bar{X}^2] &= Var[\bar{X}] + (E[\bar{X}])^2 \\ &= \frac{\sigma^2}{n} + \mu^2 \neq \mu^2 \end{align}\]

The Invariance Property of MLEs

\[X_1,X_2,...,X_n \stackrel{iid}{\sim} exp(rate=\lambda)\]

Find the MLE of $\lambda^2$.

Let $\tau=\lambda^2$.

Reparameterize the pdf:

\[f(x;\lambda)=\lambda e^{-\lambda x}I_{(0,\infty)}(X)\]

Becomes:

\[f_2(x;\tau) = \sqrt{\tau}e^{-\sqrt{\tau}x}I_{(0,\infty)}(X)\]

After the taking the derivative and set equal $0$, we will get the MLE for $\tau$ is:

\[\hat{\tau} = \frac{1}{\bar{X}^2} = \hat{\lambda}^2\]

The MLE for $\lambda$ is:

\[\hat{\lambda} = \frac{1}{\bar{X}}\]

This is known as the invariance property of MLES. It means that if you want to estimate a function of a parameter using MLEs, you can find the MLE of the parameter and plug it into function.


Example:

\[X_1,X_2,...,X_n \sim Poisson(\lambda)\]

How can we estimate the probability that a typical measurement from this data set is greater than zero?

Can we do this more formally with a maximum likelihood estimator?

One answer:

\[\hat{p_1} = \frac{\text{# values in the sample that are > 0}}{n}\]

Other answer:

\[\begin{align} P(X_i\gt 0) &= 1 - P(X_i=0) \\ &= 1 - \frac{e^{-\lambda}\lambda^0}{0!} = 1 - e^{-\lambda} \quad (\tau(\lambda)) \end{align}\]

The pdf is:

\[f(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}I_{(0,1,2,...)}(x)\]

The joint pdf is:

\[\begin{align} f(\stackrel{\rightharpoonup}{x}&=\prod_{i=1}^{n}\frac{e^{-\lambda}\lambda^{x_i}}{x_i!}I_{(0,1,2,...)}(x_i) \\ &= \frac{e^{-\lambda}\lambda^{\sum_{i=1}^{n}x_i}}{\prod_{i=1}^{n}x_i!}\prod_{i=1}^{n}I_{(0,1,2,...)}(x_i)\\ &\text{Drop both indicators and the product of factorials}\\ &\text{because they don't involve $\theta$}\\ \end{align}\]

A likelihood is:

\[L(\lambda) = e^{-\lambda}\lambda^{\sum_{i=1}^{n}x_i}\]

The log-likelihood is:

\[\ell(\lambda) = -n\lambda+(\sum_{i=1}^{n}x_i)\ln\lambda\]

Take the derivative and set to 0:

\[\frac{\partial}{\partial\lambda}\ell(\lambda)=0 \quad \implies \hat{\lambda} = \bar{X}\]

The MLE for $\lambda$ is $\hat{\lambda} = \bar{X}$

By the invariance property of MLEs, the MLE for $p = \tau(\lambda) = 1 - e^{-\lambda}$ is:

\[\hat{\tau}(\lambda) \stackrel{invar}{=}\tau(\hat{\lambda}) = 1 - e^{-\bar{X}}\]