Covariance and Correlation
COVARIANCE
Example: An insurance agency services customers who have both a homeowner’s policy and an automobile policy. For each type of policy, a deductible amount must be specified. For an automobile policy, the choices are \$100 or \$250 and for the homeowner’s policy, the choices are \$0, \$100, or \$200.
Suppose the joint probability table is given by the insurance company as follows:
Joint probability mass function: $p(x,y)=P(X=x,Y=y)$.
When two random variable, $X$ and $Y$, are not independent, it is frequently of interest to assess how strongly they are related to each other.
Definition: The covariance between tow rv’s, $X$ and $Y$, is defined as:
$$ \begin{align} \text{Cov}(X,Y)&=E\big[\big(X-E(X)\big)\big(Y-E(Y)\big)\big]\\ &=E\big[\big(X-\mu_X\big)\big(Y-\mu_Y\big)\big]\\ \end{align} $$To calculate covariance:
$$ \text{Cov}(X,Y)=\begin{cases} \begin{align} &\sum_{x}\sum_{y}(x-\mu_X)(y-\mu_Y)P(X=x,Y=y)&&\text{(discrete)}\\ &\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(x-\mu_X)(y-\mu_Y)f(x,y)dxdy&&\text{(continuous)}\\ \end{align} \end{cases} $$The covariance depends on both the sets of possible pairs and the probabilities for those pairs.
-
If both variables tend to deviate in the same direction (both go above their means or below their means at the same time), then the covariance will be positive.
-
If the opposite is true, the covariance will be negative.
-
If $X$ and $Y$ are not strongly (linearly) related, the covariance will be near $0$.
-
Possible to have a strong relationship between $X$ and $Y$ and still have $\text{Cov}(X,Y)\approx0$.
Covariance example calculation:
$x$ | $y$ | $x-\mu_X$ | $y-\mu_Y$ | $P(X=x,Y=y)$ | |
---|---|---|---|---|---|
100 | 0 | -75 | -125 | 0.2 | 1875 |
250 | 0 | 75 | -125 | 0.05 | -468.75 |
100 | 100 | -75 | -25 | 0.1 | 187.5 |
250 | 100 | 75 | -25 | 0.15 | -281.25 |
100 | 200 | -75 | 75 | 0.2 | -1125 |
250 | 200 | 75 | 75 | 0.3 | 1687.5 |
1875 |
Computational formula for covariance:
$$ \text{Cov}(X,Y)=E(XY)-E(X)E(Y) $$Proof:
\[\begin{align} \text{Cov}(X,Y)&=E[(X-E(X)(Y-E(Y)]\\ &=E[XY-YE(X)-XE(Y)+E(X)E(Y)]\\ &=E[XY]-E[YE(X)]-E[XE(Y)]+E[E(X)E(Y)]\\ &=E[XY] - E[X]E[Y] \end{align}\]What if $X$ and $Y$ are independent?
If $X$ and $Y$ are independent, $P(X=x,Y=y)=P(X=x)P(Y=y)$ for all possible $x,y$.
\[\begin{align} \text{Cov}&=\sum_{x}\sum_{y}(x-\mu_X)(y-\mu_Y)P(X=x,Y=y)\\ &=\sum_{x}\sum_{y}(x-\mu_X)(y-\mu_Y)P(X=x)P(Y=y)\\ &=\bigg[\sum_{x}(x-\mu_X)P(X=x)\bigg]\bigg[\sum_{y}(y-\mu_Y)P(Y=y)\bigg]\\ &=\bigg[\underbrace{\sum_{x}xP(X=x)}_{E(X)}-\mu_X\underbrace{\sum_{x}P(X=x)}_{1}\bigg]\bigg[\text{similar for $Y$}\bigg]\\ &=0 \end{align}\]-
If $X$ and $Y$ are independent, $\text{Cov}(X,Y)=0$.
-
If $\text{Cov}(X,Y)=0$, we cannot conclude $X$ and $Y$ are independent.
Useful formulas for random variables $X$ and $Y$ and real numbers $a$ and $b$:
-
$E(aX+bY)=aE(X)+bE(Y)$
-
$V(aX+bY)=a^2V(X) + b^2(V(Y) + 2ab\text{Cov}(X,Y)$
Proof:
\[\begin{align} V(aX+bY)&=E\big[\big(aX+bY-E(aX+bY)\big)^2\big]\\ &=E\big[\big(aX+bY-aE(X)-bE(Y)\big)^2\big]\\ &=E\big[\big[a(X-E(X))+b(Y-E(Y))\big]^2\big]\\ &=a^2E[(X-E(X))^2]+b^2E[(Y-E(Y))^2]\\ &\quad+2abE[(X-E(X))(Y-E(Y))]\\ &=a^2V(X)+b^2V(Y)+2ab\text{Cov}(X,Y)\\ \end{align}\]
CORRELATION COEFFICIENT
Definition: The correlation coefficient of $X$ and $Y$, denoted by $\text{Cor}(X,Y)$ or just $\rho_{x,y}$, is defined by
$$ \rho_{x,y}=\frac{\text{Cov}(X,Y)}{\sigma_X\sigma_Y} $$It represents a “scale” covariance. The correlation is always between $-1$ and $1$.
Two special cases:
1. What if $X$ and $Y$ are independent?
\[\text{Cov}(X,Y)=0\quad\text{so}\quad\rho_{x,y}=0\]2. What if $Y=aX+b$ ($Y$ is a linear function of $X$)
-
Find $\text{Cov}(X,Y)$:
\[\begin{align} \text{Cov}(X,Y)&=\text{Cov}(X, aX+b)\\ &=E\big[(X-E(X))(aX+b-E(aX+b))\big]\\ &=aE[(X-E(X))^2]\\ &=aV(X)=a\sigma_X^2 \end{align}\] -
Find $V(Y)$:
\[\begin{align} V(Y)&=E[(Y-E(Y))^2]\\ &=E[(ax+b-E(ax+b))^2]\\ &=a^2V(X)\\ &=a^2\sigma_X^2 \end{align}\]So: $\sigma_Y=\sqrt{a^2\sigma_X^2}=\vert a\vert\sigma_X$
-
Find $\rho_{x,y}$:
\[\begin{align} \rho_{x,y}&=\frac{\text{Cov}(X,Y)}{\sigma_X\sigma_Y}\\ &=\frac{a.\sigma_X^2}{\sigma_X.\vert a\vert.\sigma_X}\\ &\begin{cases} &1&&\text{if }a\gt0\\ &-1&&\text{if }a\lt0\\ \end{cases} \end{align}\]
Example:
From previous example:
Find $\rho_{x,y}$
We have:
\[\text{Cov}(X,Y)=1875\\ E(X)=175\\ E(Y)=125\\\] \[\begin{align} V(X)&=E(X^2)-(E(X))^2\\ &=5625\\ V(Y)&=E(Y^2)-(E(Y))^2\\ &=6875\\ \end{align}\] \[\rho_{x,y}=\frac{1875}{\sqrt{5625}\sqrt{6875}}\approx0.3\]