The Poisson and Exponential Random Variables
The Poisson Random Variable
The number of customers who arrive for service, and their waiting times, are described by the Poisson rv and the exponential rv, respectively.
A Poisson rv is a discrete rv that describes the total number of events that happen in a certain time period.
- # of vehicles crossing a bridge in one day.
- # of gamma rays hitting a satellite per hour.
- # of cookies sold at a bake sale in one hour.
- # of customers arriving at a bank in a week.
Definition: A discrete random variable $X$ has Possion distribution with parameter $\lambda(\lambda\gt0)$ if the probability mass function of $X$ is
\[\color{red}{ P(X=k)=\frac{\lambda^k}{k!}e^{-λ}}\quad\text{for }k=0,1,2,\ldots\]Verify:
\[\begin{align} \sum_{k=0}^{\infty}P(X=k)&=\sum_{k=0}^{\infty}\frac{\lambda^k}{k!}e^{-\lambda}\\ &=e^{-\lambda}\underbrace{\sum_{k=0}^{\infty}\frac{\lambda^k}{k!}}_{e^\lambda}\\ &=e^{-\lambda}e^\lambda\\ &= 1 \end{align}\]Expected value
\[\begin{align} \color{red}{E(X)}&=\sum_{k=0}^{\infty}kP(X=k)\\ &=\sum_{k=0}^{\infty}k\frac{\lambda^k}{k!}e^{-\lambda}\\ &=\lambda\underbrace{\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}}_{e^\lambda}e^{-\lambda}\\ &=\color{red}{\lambda} \end{align}\]The second moment
\[\begin{align} E(X^2)&=\sum_{k=0}^{\infty}k^2P(X=k)\\ &=\sum_{k=0}^{\infty}k^2\frac{\lambda^k}{k!}e^{-\lambda}\\ &=\lambda(\lambda+1) \end{align}\]Variance
\[\begin{align} \color{red}{V(X)}&=E(X^2) - (E(X))^2\\ &=\lambda(\lambda+1)-\lambda^2\\ &=\color{red}{\lambda} \end{align}\]Notation: $X\sim\text{Poisson}(\lambda)$
Example: The number of mosquitoes captured in a trap during a given period of time can be modeled by a Poisson with $\lambda=4.5$. What is the probability that the trap contains exactly 5 mosquitoes? 5 of fewer mosquitoes?
$X=\text{# of mosquitoes}$
$X\sim\text{Poisson}(\lambda=4.5)$
\[\begin{align} P(X=5)&=\frac{(4.5)^5}{5!}e^{-4.5}\\ &\approx0.1708\\ P(X\le5)&=\sum_{k=0}^5P(X=k)\\ &=\sum_{k=0}^5\frac{(4.5)^k}{k!}e^{-4.5}\\ &\approx0.7029 \end{align}\]Example: A factory makes parts for a medical device company. On average, the rate of defective parts per day is 10. You are responsible for monitoring the number of defective parts on a particular day.
- Define a appropriate random variable for this experiment.
- Give the values that the random variable can take on.
- Find the probability that the random variable equals 2.
- What assumptions do you need to make?
Let $X=\text{# of defective parts (that day)}$
Model $X\sim\text{Poisson}(\lambda=10)$, $X\in{0,1,2,\ldots}$
Assumption: $X$, as a Poisson, can take on an infinite number of values, but we can’t make an infinite # of parts.
\[\begin{align} P(X=2)&=e^{-\lambda}\frac{\lambda^2}{2!}\\ &=e^{-10}\frac{(10)^2}{2!}\\ &\approx0.0023 \end{align}\]The Exponential Random Variable
The family of exponential distributions provides probability models that are widely used in engineering and science disciplines to describe time-to-event data. An exponential rv is continuous.
- Time until birth.
- Time until a light bulb fails.
- Waiting time in a queue.
- Length of service time.
- Time between customer arrivals.
Definition: A continuous random variable $X$ has the exponential distribution with rate parameter $\lambda(\lambda\gt0)$ if the pdf of $X$ is:
\[f(x)=\begin{cases} \begin{align} &\lambda e^{-\lambda x},&&x\ge 0\\ &0,&&\text{else} \end{align} \end{cases}\]Verify:
\[\begin{align} \int_{-\infty}^{\infty}f(x)dx&=1\\ &\Downarrow\\ \int_{0}^{\infty}\lambda e^{-\lambda x}dx&=\lim_{t \to 0}\int_0^{t}\lambda e^{-\lambda x}dx\\ &=\lim_{t \to 0}\frac{\lambda}{-\lambda}e^{-\lambda x}\bigg\rvert_{0}^{t}\\ &=\lim_{t \to 0}(-e^{-\lambda t}+1)\\ &=1 \end{align}\]Expected value
\[\begin{align} \color{red}{E(X)}&=\int_{}^{}x.\lambda e^{-\lambda x}dx\\ &=\color{red}{\frac{1}{\lambda}} \end{align}\]The second moment
\[\begin{align} E(X^2)&=\int_0^{\infty}x^2\lambda e^{-\lambda x}\\ &=\frac{2}{\lambda^2} \end{align}\]Variance
\[\begin{align} \color{red}{V(X)}&=E(X^2)-(E(X))^2\\ &=\frac{2}{\lambda^2}-\bigg(\frac{1}{\lambda}\bigg)^2\\ &=\color{red}{\frac{1}{\lambda^2}} \end{align}\]Notation $X\sim\text{exp}(\lambda)$
Useful properties of the exponential
First, if the number of events occurring in a unit of time is a Poisson rv with parameter $\lambda$, then the time between events is exponential, also with parameter $\lambda$.
Example: Suppose the number of customers arriving for service is modeled by a Poisson rv with $\lambda=5$. That is, an average of 5 customers arrive per hour. Then, the time between arrivals is exponential with $1/\lambda=1/5$. That is, the expected time between arrivals is $1/5$ hour.
The second important property is the memoryless property of the exponential rv: If $X\sim\text{Exp}(\lambda)$, then
\[\color{red}{P(X\gt s+t\vert X\gt s)=P(X\gt t)\quad\text{for all }s,t\gt0}\]Right hand side:
\[\begin{align} P(X\gt t)&=1-P(X\le t)\\ &=1 - \int_0^{t}\lambda e^{-\lambda x}dx\\ &=1 - \bigg(\frac{\lambda}{-\lambda}e^{-\lambda x}\bigg)\Bigg\rvert_{0}^{t}\\ &=1-e^{-\lambda t} - 1\\ &=e^{-\lambda t} \end{align}\]Left hand side:
\[\begin{align} P(X\gt s+t\vert X\gt s)&=\frac{P(X\gt s+t\cap X\gt s)}{P(X\gt s)}\\ &=\frac{P(X\gt s+t)}{P(X\gt s)}\\ &=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}\\ &=e^{-\lambda t} \end{align}\]Example: Suppose the service time at a bank with one teller is modeled by a rv with $X\sim\text{Exp}(\lambda=1/5)$. Then, $E(X)=1/\lambda=5$ minutes. If there is a customer in service when you enter the bank, find the probability that the customer is still in service 4 minutes later.
Let $X$ = service time of customer (starting from your entrance into bank)
\[P(X\ge4)=\int_4^\infty\lambda e^{-\lambda x}dx=e^{-4/5}\approx0.449\]In R:
lambda = 1/5
integrand = function(x){
lambda*exp(-lambda*x)
}
integrate(integrand, lower=4, upper=Inf)
Suppose that when you enter the bank, you know that customer started service 5 minutes ago. Then, what is the probability that they need at least 4 more minutes in service?
\[\begin{align} P(X\ge9\vert X\ge5)&=\frac{P(X\ge9\cap X\ge5)}{P(X\ge5)}\\ &=\frac{P(X\ge9)}{P(X\ge5)}\\ &=\frac{e^{-9/5}}{e^{-1}}\\ &=e^{-4/5} \end{align}\]